
Ian Gorton
Professor, Director of Computer Science,
Northeastern University, Seattle Campus
Email: i.gorton@neu.edu

South Lake
Union

FaceBook

Google
Allen
Institute

Let’s start with some examples

Remember
Youtube started in November 2005

Facebook went available to the public in September
2006

4 billion video views per day

6 billion hours of video watched per month

300 hours of video uploaded per minute

http://expandedramblings.com/index.php/youtube-statistics/
Viewed October 2015

http://expandedramblings.com/index.php/youtube-statistics/

2009
15 billion photos, 4 replicas each

1.5PB

30 million new photos per day

2013
240 billion photos total

350 million photos a day

2015
2 billion photos per day,

40 PB of new disk capacity per day

http://www.nextplatform.com/2015/05/07/col
d-storage-heats-up-at-facebook/

Runs 28% of the entire internet

17 posts per second are published globally

Around 15,886,000 websites including:
2,645 of the top 10k websites on the web

WordPress gets more unique visitors than Amazon
(126 million per month vs. 96 million per month)

409+ million people view more than 19.6 billion pages
on WordPress.com monthly

54.2 million new posts and 49.9 million new comments
are added monthly

Has only 564 employees. Wordpress is open source!

We’re software engineering
research-y folks

So we should be tackling
problems that will manifest
themselves in the future?

Maybe 10 years?

2025???

http://www.zdnet.com/article/the-internet-of-things-and-big-
data-unlocking-the-power/

2025???

Major Internet Companies
have 1m+ servers in 2013

2025???

http://www.datastax.com/2012/01/choosing-the-right-architecture-for-
big-data-scale

Ahmdahl’s Law

Ahmdahl’s Law

2025???

Ahmdahl’s Law

in 2025???

Data
Skew???

Let’s ask the experts….
First mention is on p187

4th of eight ‘other quality
attributes’

1/3 of a page …

…. in a 589 page book

Weird?
No criticism implied, just
weird

Let’s try out some scenarios
My system supports 10 concurrent requests with 1
second response time on one server

I want to support 100 concurrent requests

Test with 1 server

Number of requests

Response
Time (secs)

1

10

100

Let’s try out some scenarios
My database system supports 10 concurrent
requests with 1 second response time on one
server

I want to support 100 concurrent requests …

Test with 10 servers

Number of requests

Response
time

1

10

100

10 servers gives us 1 second response time ☺

if moving from 1 server to 10 servers took N
hours of effort, was the original system scalable
if N is:

1?

10?

50?

100?

1000?

100000?

A system not designed to
scale will cost more to
transform

But it’s probably doable

Scalability = f(effort, cost,
runtime)

Let’s try an effort/cost scenario
My database is 1PB

Needs to grow from 1PB to 64PB in 1 year

Total cost = f(hardware, effort)

Current cost are $1million/month for deployment

Database size

Cost ($m)

1

64

64PB

Let’s try an effort/cost scenario
My database is 1PB

Needs to grow from 1PB to 64PB in 1 year

Total cost = f(hardware, effort)

Current cost are $1million/month

Database size

Cost ($m)

1

64

64PB

??

Costs = fixed + variable

In our example: Costs = hardware + effort

Successful scalability strategies require
‘minimal’ effort

http://highscalability.com/blog/2011/3/25/did
-the-microsoft-stack-kill-myspace.html

the

capability of a system, network, or process to
handle a growing amount of work,

and

its potential to be enlarged

in order to accommodate that growth.

http://johnewart.net/posts/soa_in_practice/birth_of_the_monolith/

Hyper scalable systems exhibit

exponential growth rates in computational resources

while

exhibiting linear growth rates in the operational costs

of resources required to build, operate, support and
evolve

the required software and hardware resources.

Scale in itself changes everything
Well understood principles and practices don’t
work at scale

Some examples
Architectures/Patterns

Team organizations

Testing approaches

Systems typically built to provide an acceptable
average response time

E.g 2 seconds mean response for GUI/Browser

100 ms mean response time for database query

http://apmblog.dynatrace.com/2012/11/14/why-averages-suck-and-percentiles-are-great/

most applications have a few very heavy outliers
curve has a long tail

A few requests that are magnitudes slower than
the mean

This is a BIG problem at scale
They consume resources for an unpredictable
period of time

Slow responses impact business value

Can cause cascading failures

Target service response times for e.g. 99th

percentile
99% of requests will be satisfied in 100ms

Service requestors can use aggressive timeouts
with this knowledge

Timeout after 300ms?

Prevents blocked resources and risk of
cascading failures

Circuit breakers can be used in service requestor
to shed load if the called service is unexpectedly
slow

We all know software
architecture
documentation is usually
limited/non-existent

Many researchers
therefore claim we need
more documentation ….

If we (ideally) need D docs
for a system of size N

We need ~10D for a system
of size 10N?

Common approaches are agile and flexible
Small teams (e.g. Amazon 2 pizza rule)

Autonomy of decision making for services a
team is responsible for

Short sprints, feature driven

Services provide contracts for performance
E.g. 99th percentile response times

Coordination across teams performed by
engineers external to the teams

Same as services ….

Only smaller ….

Single application as a suite of services
organized around business responsibilities

Services run in own process, typically
communicate using REST/HTTP

Independently deployable, scalable services

Each service makes local decisions on
programming languages, database, etc

Minimal/no centralized control over
design/evolution

“Organizations which design systems…are
constrained to produce designs which are copies
of the communication structures of these
organizations.”

Reflect structure of loosely coupled,
independent teams

A team owns the microservice for its lifetime, as
in Amazon’s oft-quoted “You build it, you run
it.”

Test in production at whole system level

http://www.strehle.de/tim/weblog/archives/2010/11/09/1320

Team with Qianli Ma & Yao Wang.

In this project, we plan to replace our original load balancer & scaled Tomcat servers
with AWS Lambda functions.

This not only helps us focus more on the business logic and less on infrastructure
configurations, but also handles the scaling-up and down automatically. There will be
no more pain on the deployment and scaling process.

What we will do in the project:
• Rewrite all server-side (ski data processor) logic with Lambda Function Handlers

(Node.js)
• Run client tests and compare performance between two architectures

What we will learn in the project:
• Learn the serverless architecture and apply it into practice with AWS Lambda
• Rewrite server-side code with Node.js and learn the difference between

synchronous and asynchronous programming (Java vs. JavaScript)

